
7/15/25, 11:47 AMProgram Tracing

Page 1 of 41https://lec.inf.ethz.ch/ifmp/2019/dl/additional/handouts/ProgramTracing.html

Program Tracing

This handout is based on the ideas presented in An Explicit Strategy to Scaffold Novice
Program Tracing (https://dl.acm.org/citation.cfm?id=3159527) by Benjamin Xie, Greg L. Nelson, and
Andrew J. Ko.

Program tracing is the process of executing program code by hand, with concrete inputs.
Similar to how it is important for children to have the basic skills of reading before they can
start writing their own sentences, it is important to be able to execute existing code by
hand, before writing own code. This handout explains how to trace C++ programs with pen
and paper, and check that traces are correct with C++ (http://pythontutor.com/cpp.html#mode=edit)

Tutor (http://pythontutor.com/cpp.html#mode=edit) (a version of Python Tutor (http://pythontutor.com/)

for C++).

In the first section we start with tracing the most basic programs. Then in each following
section we extend our approach to handle more and more complicated language features.

Basic

In this section we will learn how to execute the most basic C++ programs, such as the
following one, by hand:

#include <iostream>
int main() {
 int a;
 a = 5;
 int b;
 b = 3;
 a = a + b;
 std::cout << a << std::endl;
 return 0;
}

https://dl.acm.org/citation.cfm?id=3159527
http://pythontutor.com/cpp.html#mode=edit
http://pythontutor.com/cpp.html#mode=edit
http://pythontutor.com/

7/15/25, 11:47 AMProgram Tracing

Page 2 of 41https://lec.inf.ethz.ch/ifmp/2019/dl/additional/handouts/ProgramTracing.html

One of the hard aspects of program tracing is precisely tracking how the program state
changes during execution. The program state of simple programs such as the one above is
the values stored in the variables. We can represent this state by using a simple table:

Variable Value

… …

Now we can execute the program, statement by statement, and update the table:

1. The first statement in the program is int a; . We execute this statement by adding a
new row with variable a and no value to our table:

Variable Value

a

Why do we leave the Value column empty? Because variable a is uninitialised, and if
our executions reaches a program point where we read an uninitialised variable, we
know that our program has a bug because reading an uninitialised variable is an illegal
operation in C++ (in C++ jargon: the execution has undefined behaviour).

2. The second statement is a = 5; . We execute it by finding the row with variable a
and adding 5 to its Value column:

Variable Value

a 5

If the table did not have a row with a variable a , that would indicate a bug in the
program.

3. The next two statements, int b; and b = 3; , are executed analogously:

Variable Value

a 5

b 3

7/15/25, 11:47 AMProgram Tracing

Page 3 of 41https://lec.inf.ethz.ch/ifmp/2019/dl/additional/handouts/ProgramTracing.html

4. The next statement is a = a + b . First we evaluate the assignment’s right hand side,
i.e. the expression a + b . To do that, we look up the values of a and b in the table
and add them: a + b evaluates to 5 + 3 , and then to 8 . Since the computed value
is assigned to (stored in) variable a , we cross out the variable’s old value 5 and write
down its new value 8 . The updated table looks as follows:

Variable Value

a 5, 8

b 3

5. The last interesting statement is std::cout << a << std::endl; , which writes the
current value of a , followed by a line break (std::endl), to standard output
(std::cout). Since a program can only create additional output, but cannot change
what has already been output, we can track the program output by always appending
it to a dedicated table row, like this:

Program Output

8

6. The final statement in the program is return 0; : it exits the main function and
terminates the program (and we can ignore the returned 0 in this case).

Checking Program Traces with C++ Tutor

To check whether your program trace is correct, you can use C++ Tutor:
(http://pythontutor.com/cpp.html#mode=edit)

1. Open the C++ Tutor website http://pythontutor.com/cpp.html#mode=edit
(http://pythontutor.com/cpp.html#mode=edit)

http://pythontutor.com/cpp.html#mode=edit
http://pythontutor.com/cpp.html#mode=edit

7/15/25, 11:47 AMProgram Tracing

Page 4 of 41https://lec.inf.ethz.ch/ifmp/2019/dl/additional/handouts/ProgramTracing.html

2. Enter your code into the text field:

3. Click on Visualize Execution. The following view should be displayed:

4. You can step through the program execution by using the “Forward >” button. The
values displayed in the blue Stack table should match the not crossed-out values in
our table above.

7/15/25, 11:47 AMProgram Tracing

Page 5 of 41https://lec.inf.ethz.ch/ifmp/2019/dl/additional/handouts/ProgramTracing.html

Exercises

In exams, typical questions related to program tracing are “What is the output of this
program?” and “What value will variable x have at a specific program point?”.
Task 1
What values will variables a and b have at the end of this program:

int main() {
 int a;
 a = 5;
 int b;
 b = 3;
 int c;
 c = a;
 a = b;
 b = c;
 return 0;
}

Execute the program on paper, and then check your solution using C++ Tutor.

Scopes

Note: Scopes are going to be introduced in the third week of the course.
In C++, it is possible to shadow a variable by declaring a new variable with the same name
in a nested scope. For example, in the following program, variable a of type int is
shadowed by variable a of type double :

7/15/25, 11:47 AMProgram Tracing

Page 6 of 41https://lec.inf.ethz.ch/ifmp/2019/dl/additional/handouts/ProgramTracing.html

#include<iostream>
int main() {
 int a = 1;
 {
 double a;
 a = 5;
 std::cout << a << std::endl;
 }
 std::cout << a << std::endl;
 return 0;
}

If we execute this program, it will output the numbers 5 and 1 . However, if we traced the
program as described in the previous section, we would conclude that it outputs 5 and
 5 . Therefore, we need to extend our tracing approach from the previous section to handle
scopes. We can do this as follows:

1. We execute the first statement int a = 1; as before. Since it declares a variable and
initialises it with a value, we do the following:

1. Add a new row for variable a at the bottom of the program state table.

2. Mark that 1 was assigned to a by updating the Value column to 1.
Our table now looks as follows:

Variable Value

a 1

2. As a next step, the execution will enter a new block (whose start is marked by {), and
thereby a new scope. We can reflect this by appending a new row that contains { to
the bottom of our table:

Variable Value

a 1

{

7/15/25, 11:47 AMProgram Tracing

Page 7 of 41https://lec.inf.ethz.ch/ifmp/2019/dl/additional/handouts/ProgramTracing.html

3. The next statement in our program is double a; . Since it is a variable declaration, we
add a new row for variable a at the bottom of our table:

Variable Value

a 1

{

a

4. We execute a = 5; by updating the Value column of the lowest not crossed-out row
that contains variable a :

Variable Value

a 1

{

a 5.0

5. Similarly to the previous step, to look up the value of a we take the lowest not
crossed-out row that contains variable a . Therefore, std::cout << a <<
std::endl; will output 5 :

Program Output

5

6. As a next step, the execution will exit the block (whose end is marked by }), and
thereby the corresponding scope. We reflect this in our state table as follows:

1. We find the lowest row that contains a not crossed-out { .

2. We cross out that row and all rows that are below it starting from the lowest one.
The updated table looks as follows:

7/15/25, 11:47 AMProgram Tracing

Page 8 of 41https://lec.inf.ethz.ch/ifmp/2019/dl/additional/handouts/ProgramTracing.html

7. The next statement is std::cout << a << std::endl; , which writes the value of
variable a to standard output. To find the value of a , we take the lowest not
crossed-out row, which, in this case, contains value 1 . Therefore, the statement will
output 1 to standard output and the final output of the program will be:

Program Output

5
1

8. The last statement is again return 0; , which ends the program execution.

Note: Unfortunately, C++ Tutor visualises the programs that shadow variables incorrectly.
Therefore, you cannot use it to check whether your traces are correct.

Function Calls

Note: Function calls are going to be introduced in the fifth week of the course.

In C++, one of the constructs for structuring code is functions. For example, we can define
a function that finds a larger of two integers as follows:

7/15/25, 11:47 AMProgram Tracing

Page 9 of 41https://lec.inf.ethz.ch/ifmp/2019/dl/additional/handouts/ProgramTracing.html

int max(int a, int b) {
 if (a > b) {
 return a;
 } else {
 return b;
 }
}

The int max(int a, int b) is called the function signature. The word before the
parenthesis (max)is the function name. int before the function name is the function
return type. Between the parenthesis we have a declaration of function parameters, in this
case, the function has two parameters of type int : a and b .
After we declared the function, we can call it to compute the result for us. For example, in
the following main function we call function max with arguments x and y :

#include<iostream>
int max(int a, int b) { /* code from above */ }
int main() {
 int x = 4;
 int y = 8;
 int larger;
 larger = max(x, y);
 std::cout << larger << std::endl;
 return 0;
}

We can trace this program as follows:

1. We create a table as before, just now we additionally write the function signature with
argument names omitted as the title of the table. For main , the initial table would look
like this:

2. We execute the first statement int x = 4; as before and get the following table:

7/15/25, 11:47 AMProgram Tracing

Page 10 of 41https://lec.inf.ethz.ch/ifmp/2019/dl/additional/handouts/ProgramTracing.html

3. Similarly for the second int y = 8; and third int larger; statements. The table we
have so far is:

4. Now, the next statement is larger = max(x, y); that is composed of a function call
 max(x, y) and assignment of the function result to the variable larger . First, we
execute the function call. We do that as follows:

1. We create a new table for the target function max :

2. Then, we create a local variable for each parameter of the function max :

7/15/25, 11:47 AMProgram Tracing

Page 11 of 41https://lec.inf.ethz.ch/ifmp/2019/dl/additional/handouts/ProgramTracing.html

3. Then, we evaluate the arguments passed to the function and match them with the
newly allocated variables. For example, the first argument to the function max is
 x , which evaluates to 4 . Since the first parameter is a , we write 4 as the value
of a . Similarly, we compute the value of b and the updated table looks like this:

4. Once we initialized all the parameters, we continue tracing the program as before,
just now we use the newly allocated table.

5. To decide which branch we need to take, we need to evaluate the expression a >
b . We lookup the values of a and b in the latest table and then evaluate the
expression. Since 4 > 8 is false, we take the else branch.

6. The statement on the else branch is return b; . We evaluate the expression b
and write the computed value next to the function signature. Then, we cross out
the table for the call of the max function and return back to evaluating in the
 main function.

Note: if the function return type is void (that is, the function does not return
anything), we omit the computation of its return value.

Note: if we reach end of the non- void function body without executing the
return statement, that indicates the we found a bug in our program and we
have to stop tracing.
The updated tables look as follows:

7/15/25, 11:47 AMProgram Tracing

Page 12 of 41https://lec.inf.ethz.ch/ifmp/2019/dl/additional/handouts/ProgramTracing.html

7. To finish evaluating statement larger = max(x, y); , we still need to assign the
function result to variable larger . We do it as before. Both tables now look like
this:

5. The next statement in our main function is std::cout << larger << std::endl; .
We execute it as usual and get the following output:

Program Output

8

6. The final statement of the program is return 0; . We execute it in the same way as
the previous return statement: we write 0 next to the function signature and cross
out the table. Since this was the last table, the program terminates. The final state
looks as follows:

Note: C++ Tutor does support function calls, so you can use it to check your traces.

Exercises

Task 1
What values are going to be printed by the following program:

7/15/25, 11:47 AMProgram Tracing

Page 13 of 41https://lec.inf.ethz.ch/ifmp/2019/dl/additional/handouts/ProgramTracing.html

#include<iostream>
unsigned int f(unsigned int n) {
 if (n == 0) {
 return 0;
 } else {
 if (n == 1) {
 return 1;
 } else {
 return f(n - 2) + f(n - 1);
 }
 }
}

int main() {
 unsigned int x = f(5);
 std::cout << x << std::endl;
 return 0;
}

References

Note: References are going to be introduced in the sixth week of the course.

In C++ we can also access variables using references. This is especially useful when we
need to access the same variable from several scopes (e.g. two different functions). Let’s
see why:

Imagine we want to create a function that increments the value of a variable. Consider the
following code using the function called increment .

7/15/25, 11:47 AMProgram Tracing

Page 14 of 41https://lec.inf.ethz.ch/ifmp/2019/dl/additional/handouts/ProgramTracing.html

#include <iostream>

void increment(int x) {
 x = x + 1;
}

int main() {
 int a = 3;
 increment(a);
 std::cout << a << std::endl;
 return 0;
}

Before we call the increment function, our table looks like this:

a 3

Once we enter the increment function, we create its table and copy the value of a to x .
This means we now have two variables with the same value of 3 .

a 3

void increment()

x 3

However, the x = x + 1 statement will only affect the variable x .

a 3

void increment()

x 4

This means that the variable a will not change when we finish executing the increment
function, as we do not return the variable x and do not assign a new value to variable a .
Therefore, the statement std::cout << a << std::endl will print 3 .

7/15/25, 11:47 AMProgram Tracing

Page 15 of 41https://lec.inf.ethz.ch/ifmp/2019/dl/additional/handouts/ProgramTracing.html

a 3

void increment()

x 4

Obviously, this is not how we want increment to work. Instead, we want the increment
and main functions to both use the same variable.

This is where references come into play…

References are nothing else than an alias to another variable. Basically, we are telling the
C++ compiler “I want to continue using this variable, but with a different name and/or in
different scope”. In order to indicate that a variable is actually a reference, we can just add
a & symbol to the end of its type.

Consider the following code:

#include <iostream>

int main() {
 int a = 3;
 int& b = a;
 b = 7;
 std::cout << a << std::endl;
 return 0;
}

The statement int a = 3 has the same effect as in previous examples:

a 3

However, int& b = a now creates a reference of a called b . In our table the variable b
should therefore not have its own value. Instead we just indicate what variable it
references.

7/15/25, 11:47 AMProgram Tracing

Page 16 of 41https://lec.inf.ethz.ch/ifmp/2019/dl/additional/handouts/ProgramTracing.html

a 3
b &

We use the “&” symbol to indicate that b is a reference. Then we draw an arrow to the the
variable that it references. In this case it is a . Using the “&” symbol is not mandatory, but
it helps us remember that b is a reference.

The next statement b = 7 would usually change the value of b in our table. But as b is
only a reference we now use our table to look up which value we actually need to change.
We just need to follow the arrow to the the value of variable a . So let’s change the value
of a to 7 .

a 3
b &

7

Thanks to references we were able to change the value of a variable without needing to
access it directly. Therefore the statement std::cout << a << std::endl will now print
 7 .

Now let’s get back to our increment function…

Let’s change the signature of the function just slightly: Instead of void increment(int x)
we write void increment(int& x) . So x is no longer and independent variable, but a
reference instead.

7/15/25, 11:47 AMProgram Tracing

Page 17 of 41https://lec.inf.ethz.ch/ifmp/2019/dl/additional/handouts/ProgramTracing.html

#include <iostream>

void increment(int& x) {
 x = x + 1;
}

int main() {
 int a = 3;
 increment(a);
 std::cout << a << std::endl;
 return 0;
}

Tracing the statement int a = 3 gives us this table once again:

a 3

However, once we enter the increment function things get interesting. As x is now a
reference, its value will no longer just get a copy of the value of a . Instead it will now
reference a .

a 3

void increment()

x &

The statement x = x + 1 will therefore effect the value of a .

a 4

void increment()

x &

7/15/25, 11:47 AMProgram Tracing

Page 18 of 41https://lec.inf.ethz.ch/ifmp/2019/dl/additional/handouts/ProgramTracing.html

By finishing and leaving the increment function, we destroy the reference x . However,
our change to a is not affected.

a 4

void increment()

x &

Our increment function is therefore working correctly. And the statement std::cout <<
a << std::endl will print 4 .

Exercises

Task 1
What values are going to be printed by the following program:

#include <iostream>

int main() {
 int a = 2;
 int b = 5;
 int& c = a;
 b = a + c;
 c = a + b;
 std::cout << b << std::endl;
 a = 7;
 std::cout << c << std::endl;
 return 0;
}

Task 2
What value is going to be printed by the following program:

7/15/25, 11:47 AMProgram Tracing

Page 19 of 41https://lec.inf.ethz.ch/ifmp/2019/dl/additional/handouts/ProgramTracing.html

#include <iostream>

int something(int& n) {
 if (n == 17) {
 return 5;
 } else {
 return 8;
 }
}

int main() {
 int h = 42;
 int g = 17;
 int& n = g;
 h = g + something(h);
 std::cout << h << std::endl;
 return 0;
}

Task 3
What values are going to be printed by the following program:

#include <iostream>

int t(int x, int& y) {
 x = y + 4;
 y = x + 2;
 return x + y;
}

int main() {
 int a = 3;
 int b = t(a, a);
 std::cout << a << std::endl;
 std::cout << b << std::endl;
 return 0;
}

You can use C++ Tutor (http://pythontutor.com/cpp.html#mode=edit) to check whether your solution
is correct. However, please note that C++ tutor uses a slightly different terminology.

http://pythontutor.com/cpp.html#mode=edit

7/15/25, 11:47 AMProgram Tracing

Page 20 of 41https://lec.inf.ethz.ch/ifmp/2019/dl/additional/handouts/ProgramTracing.html

Pointers

Note: Pointers are going to be introduced in the eleventh week of the course.

A pointer in C++ is a variable that stores the address of a memory location. We can get an
address of a memory location by using & operator. For example, the following code
snippet prints an address of the variable a :

#include <iostream>
int main() {
 int a = 3;
 int* a_ptr = &a;
 std::cout << a_ptr << std::endl;
 return 0;
}

If you run this program, it will print some large hex number such as 0x7fff8957ab1c. When
we think about the program, we are typically interested not in the actual numeric value of
the address, but what object is at that address. Therefore, when tracing pointers we will
use a similar notation to references: an arrow that points to the memory the pointer is
currently pointing to. To distinguish between references and pointers, we will use a dot at
the beginning of the arrow instead of & . For example, the state after executing the
statement int* a_ptr = &a; in the program above would be:

a 3a
a_ptr

Let’s trace the following program:

7/15/25, 11:47 AMProgram Tracing

Page 21 of 41https://lec.inf.ethz.ch/ifmp/2019/dl/additional/handouts/ProgramTracing.html

#include <iostream>
int main() {
 int a = 3;
 int b = 4;
 int* p1;
 int* p2;
 p1 = &a;
 p2 = p1;
 *p2 = 5;
 p2 = &b;
 std::cout << a << " " << b << std::endl;
 return 0;
}

1. The statements int a = 3; and int b = 4; has the same effect as in the previous
examples:

a 3a
b 4

2. The statements int* p1; and int* p2; declare pointers p1 and p2 of type int* :

a 3a
b
p1
p2

4

3. p1 = &a; stores the address of a into p1 :

7/15/25, 11:47 AMProgram Tracing

Page 22 of 41https://lec.inf.ethz.ch/ifmp/2019/dl/additional/handouts/ProgramTracing.html

a 3a
b
p1
p2

4

4. p2 = p1; assigns the value of p1 (which is the address of a) to p2 :

a 3a
b
p1
p2

4

5. When we assign directly to the pointer (like in the previous statement), we change the
address stored in it. If we want to store a new value to the memory location whose
address is stored in the pointer, we need to dereference the pointer with the
dereference operator * . That is exactly what the statement *p2 = 5; does; it stores
5 at the address pointed at by p2 :

a 3a
b
p1
p2

4
5

6. Unlike references, pointers can be reassigned. We track that by crossing the old dot
and adding a new arrow:

7/15/25, 11:47 AMProgram Tracing

Page 23 of 41https://lec.inf.ethz.ch/ifmp/2019/dl/additional/handouts/ProgramTracing.html

a 3a
b
p1
p2

4
5

7. The last two statements print the values stored in a and b to the standard output
and return from the function terminating the program.

Exercises

Task 1

Trace the following program:

int main() {
 int a = 5;
 int* x = &a;
 *x = 6;
 return 0;
}

Solution

1. After int a = 5; :

aa

2. After int* x = &a; :

7/15/25, 11:47 AMProgram Tracing

Page 24 of 41https://lec.inf.ethz.ch/ifmp/2019/dl/additional/handouts/ProgramTracing.html

aa
x

3. After *x = 6; :

aa
x

Dynamic Data Types

Note: Dynamic data types are going to be introduced in the eleventh week of the course.

Pointers can point not only to variables, but also to dynamically allocated memory. Let’s
trace the following program:

#include<iostream>
int main() {
 int* a;
 int* b;
 a = new int[4];
 b = a;
 b++;
 *b = 1;
 b += 2;
 *b = 3;
 delete [] a;
 return 0;
}

1. The first two statements int* a; and int* b; declare two pointers a and b :

7/15/25, 11:47 AMProgram Tracing

Page 25 of 41https://lec.inf.ethz.ch/ifmp/2019/dl/additional/handouts/ProgramTracing.html

aa
b

2. The statement a = new int[4]; allocates a memory block of 4 integers and stores
its address in the variable a . We represent this by drawing a new table with 4
columns enumerated from 0 to 3 and an arrow from a pointing into the first column:

aa
b

3. The statement b = a; assigns the value of a to b :

aa
b

4. The statement b++; increments the pointer by 1, which means that now it points to
the next element in the memory block:

7/15/25, 11:47 AMProgram Tracing

Page 26 of 41https://lec.inf.ethz.ch/ifmp/2019/dl/additional/handouts/ProgramTracing.html

aa
b

5. The statement *b = 1; stores 1 at the memory location whose address is stored in
 b :

aa
b

6. The statement b += 2; increments the pointer by 2, which means that now it points
to the last element in the memory block:

aa
b

7. The statement *b = 3; stores 3 at the memory location whose address is stored in
 b :

7/15/25, 11:47 AMProgram Tracing

Page 27 of 41https://lec.inf.ethz.ch/ifmp/2019/dl/additional/handouts/ProgramTracing.html

aa
b

8. The statement delete [] a; deletes the memory block pointed at by a :

aa
b

Note: the pointer must point to the beginning of an allocated memory block. If you
reach a state where the delete statement tries to delete an already deleted block or
tries to do that via a pointer that does not point to the beginning of the block, then you
have reached an error state, which means that the program has a bug. Also,
dereferencing a pointer that points to deallocated memory is an error, too.

9. The last statement returns from the function and terminates the program.

Exercises

Task 1

Trace the following program:

7/15/25, 11:47 AMProgram Tracing

Page 28 of 41https://lec.inf.ethz.ch/ifmp/2019/dl/additional/handouts/ProgramTracing.html

#include<iostream>
int main() {
 int* a = new int[5]{0, 8, 7, 2, -1};
 int* ptr = a; // pointer assignment
 ++ptr; // shift to the right
 int my_int = *ptr; // read target
 ptr += 2; // shift by 2 elements
 *ptr = 18; // overwrite target
 int* past = a + 5;
 std::cout << (ptr < past) << "\n"; // compare pointers
 return 0;
}

Solution

1. After int* a = new int[5]{0, 8, 7, 2, -1}; :

a

2. After int* ptr = a; :

a
ptr

3. After ++ptr; :

7/15/25, 11:47 AMProgram Tracing

Page 29 of 41https://lec.inf.ethz.ch/ifmp/2019/dl/additional/handouts/ProgramTracing.html

a
ptr

4. After int my_int = *ptr; :

a
ptr
my_int

5. After ptr += 2; :

a
ptr
my_int

6. After *ptr = 18; :

7/15/25, 11:47 AMProgram Tracing

Page 30 of 41https://lec.inf.ethz.ch/ifmp/2019/dl/additional/handouts/ProgramTracing.html

a
ptr
my_int

7. After int* past = a + 5; :

a
ptr
my_int
past

8. After std::cout << (ptr < past) << "\n"; :

a
ptr
my_int
past

Program Output

1

Task 2

Trace the following function:

7/15/25, 11:47 AMProgram Tracing

Page 31 of 41https://lec.inf.ethz.ch/ifmp/2019/dl/additional/handouts/ProgramTracing.html

// PRE: [b, e) and [o, o+(e-b)) are disjoint valid ranges
void f(int* b, int* e, int* o) {
 while (b != e) {
 --e;
 *o = *e;
 ++o;
 }
}

assuming its initial state is:

b
e
o

Solution

1. The loop condition b != e evaluates to true . Therefore, we
enter the loop body:

1. After --e; :

7/15/25, 11:47 AMProgram Tracing

Page 32 of 41https://lec.inf.ethz.ch/ifmp/2019/dl/additional/handouts/ProgramTracing.html

b
e
o

2. After *o = *e; :

b
e
o

3. After ++o; :

b
e
o

7/15/25, 11:47 AMProgram Tracing

Page 33 of 41https://lec.inf.ethz.ch/ifmp/2019/dl/additional/handouts/ProgramTracing.html

2. The loop condition b != e still evaluates to true .
Therefore, we enter the loop body:

1. After --e; :

b
e
o

2. After *o = *e; :

b
e
o

3. After ++o; :

7/15/25, 11:47 AMProgram Tracing

Page 34 of 41https://lec.inf.ethz.ch/ifmp/2019/dl/additional/handouts/ProgramTracing.html

b
e
o

3. The loop condition b != e evaluates to false . Therefore, we
exit the loop. Since there are no statements after the loop, the
function terminates. The final state immediately after exiting the
function is:

b
e
o

Destructors

Note: Destructors are going to be introduced in the thirteenth week of the course.

In C++, some data structures (for example, std::vector) can be used
like primitive values even though internally they are using dynamic
memory. This is achieved by implementing a custom constructor,
destructor, copy constructor, and assignment operator. By using an

7/15/25, 11:47 AMProgram Tracing

Page 35 of 41https://lec.inf.ethz.ch/ifmp/2019/dl/additional/handouts/ProgramTracing.html

example below, we will show how to trace a program that uses a class
with a custom destructor. Other constructs can be traced in a similar
way.

#include<iostream>
class Box {
 int* ptr;
public:
 Box(int value) {
 this->ptr = new int;
 *(this->ptr) = value;
 }
 ~Box() {
 delete this->ptr;
 this->ptr = nullptr;
 }
 int value() {
 return *(this->ptr);
 }
};
int main() {
 int a;
 {
 Box b(5);
 a = b.value();
 }
 std::cout << a << std::endl;
 return 0;
}

1. The first statement int a; declares an integer a :

2. Then, the execution enters a new block and a new scope:

7/15/25, 11:47 AMProgram Tracing

Page 36 of 41https://lec.inf.ethz.ch/ifmp/2019/dl/additional/handouts/ProgramTracing.html

3. The statement Box b(5); declares a Box b and calls its constructor with an
argument 5:

1. The statement this->ptr = new int; in the constructor allocates a new integer:

2. The statement *(this->ptr) = value; assigns the passed in value to the newly
allocated integer:

7/15/25, 11:47 AMProgram Tracing

Page 37 of 41https://lec.inf.ethz.ch/ifmp/2019/dl/additional/handouts/ProgramTracing.html

The state after the constructor returns:

4. The statement a = b.value(); calls the method value() :

7/15/25, 11:47 AMProgram Tracing

Page 38 of 41https://lec.inf.ethz.ch/ifmp/2019/dl/additional/handouts/ProgramTracing.html

1. The only statement return *(this->ptr); in the method value returns the
integer stored at location pointed at by ptr :

And assigns the result to a :

5. The next step exits the block and the corresponding scope:

1. We find the lowest row that contains a not crossed-out { .

2. We cross out that row and all rows that are below it starting from the lowest one.

3. When we cross out a variable, we need to check if its type implements a

7/15/25, 11:47 AMProgram Tracing

Page 39 of 41https://lec.inf.ethz.ch/ifmp/2019/dl/additional/handouts/ProgramTracing.html

destructor. If yes, we execute it.

In this case, b has a destructor which we need to execute:

1. The statement delete this->ptr; in the destructor deallocates the integer
pointed at by this->ptr and, as a result, this->ptr becomes dangling:

2. The statement this->ptr = nullptr; sets the pointer to nullptr (indicated by
the empty set symbol):

7/15/25, 11:47 AMProgram Tracing

Page 40 of 41https://lec.inf.ethz.ch/ifmp/2019/dl/additional/handouts/ProgramTracing.html

When the b destructor finishes, the state looks as follows:

6. The statement std::cout << a << std::endl; prints the value of a to the standard
output:

Program Output

5

7. The last statement returns from the main function and terminates the program:

7/15/25, 11:47 AMProgram Tracing

Page 41 of 41https://lec.inf.ethz.ch/ifmp/2019/dl/additional/handouts/ProgramTracing.html

