
Reminders/Announcements
• Start HW-04 (and if you want, HW-05) early
• Last discussion session next Tuesday (Final

exam review)
• Final Exam next Wednesday 7/24—same

place, same time
• We suggest you pay close attention to

today’s session—these concepts are very
important.

DISCUSSION SESSION
WEEK 8

 C++ TEMPLATING & STRUCTS/CLASSES

What’s the Output? void func(int a, int b) {
 std::cout << a + b << std::endl;
 }
 int main() {
 std::string city = "Las Vegas";
 std::string state = " NV";
 int x = 5, y = 10;
 double m = 2.3, n = 3.2;
 func(x, y);
 func(m, n);
 func(city, state); }

Easy Fix ✅ void func(int a, int b) {
 std::cout << a + b << std::endl;
 }
int main() { void func(double a, double b) {
std::string city = "Las Vegas"; std::cout << a + b << std::endl;
std::string state = " NV"; }
int x = 5, y = 10; void func(std::string a, std::string b) {
double m = 2.3, n = 3.2; std::cout << a + b << std::endl;
func(x, y); }
func(m, n);
func(city, state); }

TEMPLATE PROGRAMMING

A template is a simple yet powerful tool in C++ that allows you to
write generic code that works with different data types without
sacrificing type safety.

Templates are expanded at compile-time. The compiler does
type-checking and then generates specific instances of the code
for each type used.

template <typename T>
void func(T a, T b) {
 std::cout << a + b;
}
int main() {
 int x = 5, y = 10;
 double m = 2.3, n = 3.2;
 std::string city = "Las Vegas", state = " NV";
 func(x, y);
 func(city, state);
 func(m, n);
}

// Compiler internally generates below
code for each type used

void func(int a, int b) {
 std::cout << a + b;
}
void func(std::string a, std::string b) {
 std::cout << a + b;
}

void func(double a, double b) {
 std::cout << a + b;
}

template <typename T>
void func(T a, T b) {
 std::cout << a + b;
}
int main() {
 double x = 5.3, y = 10.7;
 func<double>(x, y); // explicit template instantiation
 func(x, y); // implicit template instantiation
}

Exercise (3 minutes)

Create a template function that takes in two parameters
and returns the maximum of both.

In main, test your template function with different types
of arguments. Use both implicit and explicit template
instantiation.

C++ CLASSES
A class is a user-defined type that serves as a blueprint for
creating instances (AKA objects). Classes are a fundamental part
of object-oriented programming (OOP), which aims to organize
code in a way that models real-world entities.

Key Concepts of Classes
✓ Data Members: These are variables that hold the data associated

with an object. They define the attributes of the class.
✓ Member functions (AKA Methods): These are functions defined

inside a class that operate on the data members. They define the
behavior of the class.

Key Concepts of Classes (Contd.)

✓ Access Specifiers:
 1. Private: Members are accessible only within the class.
 2. Public: Members are accessible from outside the class.
 3. Protected: Members are accessible within the class and by
 derived classes.

class Person {
 public:
 std::string name;
 int age;
 std::string address;
};
int main() {
 Person p1, p2; // p1 & p2 are objects of Person class
 p1.name = "John Doe"; p2.name = "Jane Doe";
 p1.age = 25; p2.age = 24;
 p1.address = "45 Upper College Rd, Kingston, RI 02881";

Note: We can access
variables “name,” “age,”
and “address” in main
because they have public
access.

Note: Class declarations
end in semicolons!

How do we initialize/access private data members then?
Setters and Getters!

class Person {
 private:
 std::string name;
 int age;
 public:
 void setAge(int userAge); // a setter function to set the value of age
 int getAge(); // a getter function to access age data member
};

void Person::setAge(int userAge) {
 age = userAge;
}
int Person::getAge() {
 return age;
}

int main() {
 Person p1;
 p1.setAge(25);
 std::cout << p1.getAge() << std::endl;
}

Note: The double colon is a
scope-resolution operator
in C++ that tells the
compiler that a function/
method belongs to a
specific class.

Exercise (5 mins)
Define an Animal class with the following spec:
✓ Data Members: name (string), age (int), type (string),
 isPet (bool)
✓Methods:
 1. Setter methods for all four data members
 2. Getter methods for all four data members
 3. A method to print a friendly intro of yourself to the animal
Test your code in main with two objects and initialize with following:
 1. (Whiskers, 3 Cat, true)
 2. (Buddy, 5, Dog, true)

Now imagine you have 50 data members within your class, does
that mean we need to have 50 setter methods to initialize them?
Absolutely not!
This is where Constructors come in.
A constructor in C++ is a special method that is automatically
called when an object of a class is created.
Note: You cannot explicitly call a constructor.

A constructor has the same name as the class, it is always public,
and it does not have any return value (not even void).

Default Constructor
class Course {
 private:
 std::string professorName;
 int courseNumber;
 public:
 Course(); // default constructor
};
Course::Course() { int main() {
 professorName = "Mike Conti"; Course CSC;
 courseNumber = 211; Course MTH;
} }

Parameterized Constructor
class Course {
 private:
 std::string professorName;
 int courseNumber;
 public:
 Course(std::string prof, int courseNum); // parameterized constructor
};
Course::Course(std::string prof, int courseNum) {
 professorName = prof;
 courseNumber = courseNum;
}
Another Method to define parameterized constructor (AKA Initializer lists):
Course::Course(std::string prof, int courseNum) : professorName(prof), courseNumber(courseNum)
{ }

Parameterized Constructor

int main() {
 Course CSC("Michael Conti", 211);
 Course MTH("John Doe", 215);
 // etc…
}

The parameterized constructor is invoked/called when you create an
object with specific arguments passed to initialize the data members.

Parameterized Constructor
class Course {
 private:
 std::string professorName;
 int courseNumber;
 public:
 Course(std::string prof, int courseNum); // parameterized constructor
};
Course::Course(std::string professorName, int courseNumber) {
 professorName = professorName;
 courseNumber = courseNumber;
}

Problem here is the constructor parameters and data member variables have the
same name, and the compiler won’t know to initialize the data members!

Parameterized Constructor
Course::Course(std::string professorName, int courseNumber) {
 professorName = professorName;
 courseNumber = courseNumber;
}

This is a common mistake called Shadowing—and this occurs when a parameter name in
the constructor shadows the member variable name, making it difficult to access the
member variable directly.
To resolve this issue, we can use the this pointer to refer to the member variables. this is a
pointer that points to the object for which the member function is called.
Course::Course(std::string professorName, int courseNumber) {
 this->professorName = professorName;
 (*this).professorName = professorName; Both lines are equivalent!
}

Copy Constructor
class Course {
 private:
 std::string professorName;
 int courseNumber;
 public:
 Course(std::string prof, int courseNum);
 Course(const Course &obj); // copy constructor
};
Course::Course(const Course &obj) {
 professorName = obj.professorName;
 courseNumber = obj.courseNum;
}

Copy Constructor
int main() {
 Course CSC("Michael Conti", 211);
 Course MTH = CSC;
}
Above, for CSC, the parameterized constructor gets called. For MTH, the copy
constructor gets invoked and initializes the data members of MTH with
“Michael Conti” and 211.
 Course CSC("Michael Conti", 211);
 Course MTH;
 MTH = CSC;
Note: The copy constructor does not get called here. This is an assignment
operation!

INHERITANCE
Inheritance is a concept of classes that makes it possible to inherit attributes
and methods from one class to another. We group the “inheritance concept”
into two categories:
 1. derived class (child): the class that inherits from another class
 2. base class (parent): the class being inherited from

TYPES OF INHERITANCE
1. Single-level: One base class derives another class
2. Multi-level: A derived class derives another class. For example, GrandFather
derives Father; Father derives Child
3. Multiple: A class is derived from more than one base class. For example,
coloredShape is derived from Shape and Color.

class bigTech {
 protected:
 std::string companyName;
 int numEmployees;
 public:
 bigTech(std::string name, int numEmp) : companyName(name),
numEmployees(numEmp) { }
};
class Netflix : public bigTech {
 private:
 int numSubscribers;
 public:
 Netflix(std::string name, int numEmp, int subs) : bigTech(name, numEmp),
numSubscribers(subs) { }
};

What’s the Output?
class Animal { class Bulldog : protected Dog {
 public: private:
 Animal() { int age;
 std::cout << "This is an animal!\n"; public:
 } Bulldog(int age) {
}; this->age = age;
class Dog : public Animal { std::cout << "This is a bulldog!";
 public: } };
 Dog() { int main() {
 std::cout << "This is a dog!\n"; Animal x;
 } Animal* y = new Animal();
}; Dog d; Bulldog b(5); delete y;
 }

DESTRUCTORS
Like constructors, destructors are special methods within a
class. Destructors must be public, have the same name as the
class preceded by a ~, are automatically called when an object is
destroyed, does not have a return type (not even void).
Unlike constructors, destructors takes no arguments.

So essentially, when an object is destroyed (meaning they exist
in the stack and goes out of scope, or they exist in the heap and
the delete keyword is used), a destructor automatically gets
called.

What’s the Output?
class Animal {
 public:
 Animal() {
 std::cout << "Animal Constructor\n";
 }
 ~Animal () {
 std::cout << "Animal Destructor\n";
 }
};
int main() {
 Animal x;
}

What’s the Output?
class Animal { class Dog : public Animal {
 public: public:
 Animal() { Dog() {
 std::cout << "Animal Constructor\n"; std::cout << "Dog Constructor\n";
 } }
 ~Animal () { ~Dog() {
 std::cout << "Animal Destructor\n"; std::cout << "Dog Destructor\n";
 } }
}; };

int main() {
 Animal x;
 Dog d;
}

