
DISCUSSION SESSION
WEEK 7

 EXAM-02 REVIEW

1-DIMENSIONAL ARRAYS
•Arrays store data (elements) of the same type (that is, an
array cannot store both integers and doubles, and so
on..). Elements are stored in a sequence.
• Arrays are indexed from 0…size - 1
• Each element in an array can be accessed using its index
(inside square brackets [])
• The size of an array must be determined at compile-
time, so the compiler knows how much memory to
allocate for the array elements. The size of an array
cannot be changed!

ARRAY DECLARATION & ACCESSING
 int arr[5];
 int arr[] = {2, 3, 4, 2};

 int n = 8;
 int arr[n];

 int myArr[6] = {3, 4, 5, 6, 5, 2};
 std::cout << myArr[2] << std::endl;
 myArr[4] = 8;

Passing Array into Function
• Arrays are automatically passed into functions by reference. So,

any changes made to the array within the function will be reflected
in the original array.
• In the function parameters, it’s best to use empty brackets and pass

in the array size separately as another parameter.
void func(int myArr[], int arrSize) {
 // some code..
}
void func(int myArr[5], int arrSize) {
 // some code..
}

2-DIMENSIONAL ARRAYS
A 2D array is just an array of arrays. We use
multidimensional arrays to store a grid of items, like a
chessboard or a spreadsheet.
2-D ARRAY DECLARATION
 int myGrid[3][5]; // creates a 2-D array with 3 rows, 5 cols
 int myGrid[2][3] = {0}; // creates a 2-D array with 2 rows,
 // 3 cols, all elements initialized to 0

2-D ARRAY AS FUNCTION PARAMETER

 void func(char myArr[][5], int rows, int cols) {
 // some code..
 }

• The second square brackets of array declaration
parameter cannot be empty

POINTERS
A pointer is a special type of variable representing a
memory address. A pointer should always be set equal to
the memory address of another variable.

Note: If the ampersand is not included in the declaration
of a variable, it is considered a get-address operator.
int a = 5;
std::cout << &a; // prints out the memory address of a
int* ptr = &a; // pointer holding the address of a

 int a = 5;
 int* b = &a; // b is holding the memory address of a
If the asterisk is not included in the declaration of a
variable, it is considered a dereference operator.
Dereferencing a pointer means accessing the data stored
at the memory address that the pointer is pointing to.
 std::cout << *b; // prints 5
 std::cout << *a; // Invalid because a is not a pointer and
 // therefore cannot be dereferenced!

Passing Pointer into Function
✓ Function parameter is a pointer variable; argument is a

memory address
 double func(double a, double* b) {
 return a + *b;
 }
 int main() {
 double a = 3.5, b = 8.5;
 double sum = func(a, &b); // sets sum to 12
 }

Arrays and Pointers
Arrays are pointers. Array names are constant pointers
that point to the base address of the array. The base
address of an array is the memory address of the first
element of the array.
 int arr[] = {3, 5, 2, 7};
 std::cout << arr << std::endl;
 std::cout << &arr[0] << std::endl;
These two print statements will output the same
memory address.

Pointer Arithmetic
Reminder: Elements in arrays are laid out in memory sequentially/
contiguously, one right after the other. So, given the base address of
an array, we can iterate through the elements of the array.
 char arr[] = {'f', 'y', 'p', 'm', 't'};
 std::cout << arr; // prints out base address of array
 std::cout << *arr; // dereferences address & prints out f
If we add 1 to the base address and dereference it, we can get the
next element, and so on:
 std::cout << *(arr + 1); // prints out y
Note: Due to precedence, you must use parentheses.

Arrays as Pointers in Functions
Provided that arrays are pointers, we can explicitly declare
our array parameter as a pointer to the base address of the
array, and still iterate through the array by indexing or by
pointer arithmetic:
void func(int* arr, int size) { void func(int* arr, int size) {
 for(int i = 0; i < size; i++) { for(int i = 0; i < size; i++) {
 std::cout << arr[i] << std::endl; std::cout << *(arr + i) <<
std::endl;
 } }
} }

True or False?
1. Arrays in C++ can dynamically change their size after they
have been declared
2. The name of the array represent the address of the first
element of the array
3. Pointers in C++ must be initialized at the time of declaration
4. Arrays automatically initialize all elements to zero if no
initial values are provided
5. The size of an array must be known at compile-time

True or False: What’s the Output?

 int arr[3] = {3, 2, 1};
 int grid[3] = {3, 2, 1};
 if(arr == grid) {
 std::cout << "True";
 } else {
 std::cout << "False";
 }

True or False?
6. Elements in 1D array are stored contiguously or sequentially, but
elements in 2D array are not
7. It is possible to return an array from a function
8. The sizeof() operator returns the number of elements in an array
9. A recursive function may not generally have a base case
10. Multidimensional arrays are stored in row-major order
11. In C++, arrays can be passed by value to functions
12. The size of an array can be determined using the built-in size()
function

True or False?
13. A recursive function that does not have a base case will
always result in a compilation error
14. The address of a pointer is the same as the address the
pointer holds
15. Given an array int arr[10]; the expression arr == &arr[0];
evaluates to true

This code crashes when called with func(6). Why?

 bool func(int num) {
 if(num <= 2) {
 return false;
 }
 return func(num + 1);
 }

Sense or Nonsense? If sense, what’s the output?
 int size = 7;
 int arr[] = {1, 3, 8, 11, 9, 2, 5};
1. std::cout << *arr;
2. std::cout << arr[size];
3. int* p = arr; std::cout << **&p;
4. std::cout << *(&arr[4]);
5. std::cout << *arr + 3;
6. std::cout << *size;
7. std::cout << arr[-1];

What’s the Output?
int main() {
 int a = 5;
 int* ptr = &a;
 char letter = 'A';
 char& p = letter;
 p += a;
 *ptr += letter;
 std::cout << a << " " << letter;
}

What’s the formula that this mystery function
calculates?
int mysteryFunc(int n) {
 if(n == 0) {
 return 0;
 }
 return mysteryFunc(n- 1) + 3 * n * n - 3 * n + 1;
}
Test the function using different values for n

