
DISCUSSION SESSION
WEEK 6

C++ POINTERS

A pointer is a special type of variable representing a
memory address.
A pointer should always be set equal to the memory
address of another variable.

If there is nothing to set your pointer equal to, default it
to NULL.

Pointers and References..
int a = 5;
int& b = a; // b is a reference variable to a

If the ampersand is not included in the declaration of a
variable, it is considered a get-address operator.
std::cout << &a; // prints out the memory address of a
int* ptr; // declaration of a pointer expected to hold the

// memory address of an integer variable
int* ptr2 = &a; // pointer holding the address of a

Pointers and References..
int a = 5;
int* b = &a; // b is holding the memory address of a

If the asterisk is not included in the declaration of a
variable, it is considered a dereference operator.
Dereferencing a pointer means accessing the data stored
at the memory address that the pointer is pointing to.

std::cout << *b; // prints 5
std::cout << *a; // Invalid because a is not a pointer and

// therefore cannot be dereferenced!

Both pointers and references use the ampersand
operator (&), therefore you must be careful so
you don’t mix them up!

✓ References are declared using the ampersand

✓ Pointers are initialized with some memory
address using the ampersand

int a = 5;
int* ptr = &a;

Suppose we want to use the ptr variable to increment the
value of a:

(*ptr)++; // makes a = 6
Note: Use parentheses because the postfix operator ++
has a higher precedence than the dereference operator.
Here, we want to dereference first, then increment the
value stored at the address, so we need to use
parentheses.

Exercise (5 minutes)

1. Declare an integer variable x and initialize it to 10
2. Declare a pointer ptr and point it to x
3. Increment the value of x by 2 using ptr

(Hint: must dereference pointer!)
4. Print the modified value using ptr
5. Print the memory address stored by ptr
6. Print the memory address of ptr

int main() {

int x = 10;
int* ptr = &x;
(*ptr) += 2; // Warning: Without the dereference

operator here, you would be
incrementing the actual memory
address of ptr. Dereferencing gets the
value at the memory address ptr is
holding, in this case, 10.

std::cout << *ptr << "\n";

std::cout << ptr << "\n";

std::cout << &ptr << "\n";

}

Passing Pointer into Function

✓ Function parameter is a pointer variable; argument is a
memory address

double func(double a, double* b) {
return a + *b;

}
int main() {

double a = 3.5, b = 8.5;
double sum = func(a, &b); // sets sum to 12

}

Exercise (1 minute): Use image on right to fill in the
blank arguments in main function.

void func(int*x, int& y, int* result)
{ y /= 10;
*result = *x * y;

}
int main() {

int a = 5, b = 40, c;
func(, ,);
std::cout << c << std::endl;

}

Now what’s the output?
void func(int*x, int& y, int* result)

{ y /= 10;
*result = *x * y;

}
int main() {

int a = 5, b = 40, c;
func(&a, b, &c);
std::cout << c << std::endl;

}

Arrays and Pointers
Arrays are pointers. Array names are constant pointers
that point to the base address of the array. The base
address of an array is the memory address of the first
element of the array.

int arr[] = {3, 5, 2, 7};
std::cout << arr << std::endl;
std::cout << &arr[0] << std::endl;

These two print statements will output the same
memory address.

Pointer Arithmetic
Reminder: Elements in arrays are laid out in memory
sequentially/contiguously, one right after the other. So, given
the base address of an array, we can iterate through the
elements of the array.

char arr[] = {'f', 'y', 'p', 'm', 't'};
std::cout << arr; // prints out base address of array
std::cout << *arr; // dereferences address & prints out f

If we add 1 to the base address and dereference it, we can
get the next element, and so on:

std::cout << *(arr + 1); // prints out y

Pointer Arithmetic
char arr[] = {'f', 'y', 'p', 'm', 't'};
std::cout << *(arr + 1); // move to the next address and

// dereference it. prints out y
Warning: Parentheses are super important here because the
dereference operator has a higher precedence than the
addition operator. So, without the parentheses, we would be
doing:

std::cout << *arr + 1;
which dereferences the base address and adds 1 to it. This
would cause our code to perform 'f' + 1 which would output
the ascii value of g. Lack of parentheses here is a logic error.

sizeof operator
The sizeof() operator returns the size of a variable or data type, in
bytes.
Refresher: An int has 4 bytes. So therefore,

int arr[] = {6, 3, 3, 7, 8}; // an array of 20 bytes
std::cout << sizeof(arr); // prints 20

How do we get the number of elements in the array? By dividing
total array bytes by the bytes of one element!

std::cout << sizeof(arr) / sizeof(arr[0]); // prints 5
Warning: The sizeof operator works differently when used in a
function where the array is a parameter (click to see why!) You
must continue to pass in the size as a separate parameter.

Arrays in Functions
We previously learned to have our array parameter as follows:

void func(int arr[], int arraySize);

But provided that arrays are pointers, we can explicitly declare
our array parameter as a pointer to the base address of the
array, and still iterate through the array by indexing or by
pointer arithmetic:
void func(int* arr, int size)

{ for(int i = 0; i < size; i++)
{

std::cout << arr[i] << std::endl;
}

}

void func(int* arr, int size)
{ for(int i = 0; i < size; i++)
{

std::cout << *(arr + i) << std::endl;
}

}

Another Loop Iteration Method Using Pointer Arithmetic

void func(int* arr, int size) {
for(int* ptr = arr; ptr < arr + size; ptr++) {

std::cout << *ptr << std::endl;
}

}

This loop starts at the base address (arr), deferences it
and prints the value, moves to the next address and
repeats the process till it reaches the address of the last
element in the array.

Dynamic Memory
Until now, we have been declaring variables using stack memory.
But we can dynamically allocate memory on the heap for data
structures that require variable size or longer lifetimes.
•Unlike stack memory, heap memory can be flexible and can be

used for data structures (like dynamic arrays) where the size is
not known at compile-time. (A vector is a dynamic array—that is
why it can grow and shrink as needed, without a size restriction).
•Objects allocated on the heap can persist beyond the scope of

the function where they were allocated, until explicitly
deallocated.
•Heap memory allocation is slower than stack memory. But this is

almost never the right thing to worry about.

Dynamic Memory Allocation
We use the new keyword (typically with pointers) to allocate heap
memory and the delete keyword to deallocate memory. It is your
responsibility as a programmer to delete any dynamic memory allocation
after use, so you don’t have a memory leak and undefined behavior!

int* ptr;
ptr = new int[5]; // creates heap memory for array of 5 elements

int* num = new int; // creates heap memory for an integer

Dynamic Memory Allocation

int* ptr;
ptr = new int[5];
int* num = new int;

After doing stuff with ptr & num and they are no longer needed,
you must deallocate heap memory:

delete[] ptr; // square brackets because ptr is an array!
delete num; // num has dynamic memory for a single integer so no []

Some side advice..

•Pointers are a very important concept, especially when
implementing data structures (CSC 212).
• You must fully grasp the concept to succeed in future CS

courses and in potential job or internship technical interviews.
• Expectation is that it will be on Exam-02 and will be heavily

weighted.
•Put effort into the take-home lab to gain more practice with

pointers.

“You get out what you put in.”

