
Reminders/Announcements

• HW-02 due tomorrow 6/26
• MC-05 out, due xx/xx

DISCUSSION SESSION
WEEK 5

 C++ ARRAYS & VECTORS

An array is a container that is used to store multiple
values in a single variable, instead of declaring separate
variables for each value.

• Arrays store data (elements) of the same type (that is,
an array cannot store both integers and doubles, and so
on..). Elements are stored in a sequence.
• Arrays are indexed from 0…size - 1
• Each element in an array can be accessed using its index
(inside square brackets [])
• The size of an array must be determined at compile-
time, so the compiler knows how much memory to
allocate for the array elements. The size of an array
cannot be changed!

Note: Arrays and Lists are two different things!

Array Declaration
Here are multiple methods to declare arrays:
1. Fixed-size arrays: Most basic way to declare an array

•By specifying size directly

 int myArray[5];

• By user-specified size

int size = 5;

int myArray[size];

Array Declaration
2. Initialization at declaration: Arrays can be initialized at the
time of declaration

• Initializing a size-defined array

 int myArray[5] = {2, 4, 8, 12, 16};

 double myArray[4] = {1.0, 2.0};
• Automatic size determination

 int myArray[] = {4, 5, 3, 6, 9, 2};

Array Accessing/Indexing
An element of an array can be accessed using an index,
which is a number that represents the position of the item in
the array.
 int arr[4] = {3, 6, 2, 7};
 std::cout << arr[0]; std::cout << arr[1];
 std::cout << arr[2]; std::cout << arr[3];
If this array had a larger size (say 300), how would we print
out all elements of the array? Definitely not 300 print
statements! What’s the alternative?

Array Accessing/Indexing

A loop can also be used to iterate through the items in
an array!

 int arr[4] = {3, 6, 2, 7};
 for(int i = 0; i < 4; i++) {
 std::cout << arr[i] << std::endl;
 }

Array Element Modification
 std::string cities[3];
 cities[0] = "Boston";
 cities[1] = "San Francisco";
 cities[2] = "Salt Lake City";

 Change San Francisco to Phoenix?

 cities[1] = "Phoenix"; ✅

Passing Array into Function
• Arrays are automatically passed into functions by reference. So,

any changes made to the array within the function will be reflected
in the original array.
• In the function parameters, it’s best to use empty brackets and pass

in the array size separately as another parameter.
 void func(int myArr[], int arrSize) {
 // some code..
 }
 void func(int myArr[5], int arrSize) {
 // some code..
 }

Passing Array into Function

When providing the argument in the function call, use the vector
name:
 int main() {
 int myArr[7];
 func(myArr, 7);
 }

Exercise (5 minutes)
In main, declare myArr (an integer array of size 5).
Pass the array into a function. Within that function:

• Use a loop to set each element of myArr to the
value of its index multiplied by 2.

• Print each element of myArr separated by a
whitespace (using another loop!)

• Now, print out all elements of myArr in reverse
order!

Expected Output:
 0 2 4 6 8
 8 6 4 2 0

VECTORS
Similar to arrays, vectors are a sequence of elements of a
single type. However, unlike arrays, vectors can change in
size. This is because vectors are implemented as dynamic
arrays, which means that they can grow and shrink as needed.
This makes vectors a very flexible and powerful data
structure.

The C++ vector class is very nice because it provides us with
many methods/functions that we can call on our vector
objects/instances.

Vector Declaration
• First, you must #include <vector> header in your code

 std::vector<int> myVect; // creates an empty vector
Note: You absolutely cannot index an empty vector.

// Create a vector to store 20 elements
 std::vector<int> myVec(20);
Note: Even though this vector is initially created to store
20 integers, you can add more numbers to the vector.

Vector Declaration
• First, you must #include <vector> header in your code

 std::vector<int> myVect = {2, 9, 3, 4, 7, 4};

Note: This initialization at declaration method is called an
initializer list and only works with c++17 and later. So, if
you must use it, be sure to pass (at least) a c++17 flag to
your compilation process.

Some Vector Class Methods
 std::vector<double> myVec = {2.5, 3.7, 12.6, 8.2};

myVec.push_back(10.1); // appends 10.1 to the end of myVec
myVec.pop_back(); // deletes the last element of myVec
std::cout << myVec.size(); // prints out size of myVec
bool isEmpty = myVec.empty();
std::cout << myVec.front() << " " << myVec.back() << std::endl;
std::cout << myVec.at(2) << " " << myVec[2] << std::endl;
myVec.clear();

Passing Vector into Function
 void func(std::vector<int> myVec) {
 // some code..
 }
 void func(std::vector<int>& myVec) {
 // some code..
 }
When providing the argument in the function call, use
the vector name:
 func(myVec);

Exercise (5 minutes)
In main, declare names (a vector of strings). Pass the vector into
a void function by reference. Within that function:

• Add the following names to the vector one at a time:
John, Sarah, Jasmine, Damian, Mai, Ciara

• Remove the last name from the vector

Back in main:

• Using a loop, print out all names in the vector, one on
each line

• Print out the size of the vector

• Delete all contents of the vector

2-DIMENSIONAL ARRAYS & VECTORS
A 2D array is just an array of arrays. Similarly, a 2D vector is a
vector of vectors. We use multidimensional arrays to store a
grid of items, like a chessboard or a spreadsheet.
The general rule of thumb is to use a 2D array if you know the
size of the grid at compile time, and to use a 2D vector if you
don’t.
This is because 2D arrays are more efficient, but 2D vectors are
more flexible because they can grow and shrink as needed.

2-DIMENSIONAL ARRAY & VECTOR DECLARATION

 int myArr[4][4]; // Creates a 4x4 array

2-DIMENSIONAL ARRAY & VECTOR DECLARATION
 int rows = 3, cols = 4;
 int myArr[rows][cols] = {
 {1, 2, 3, 4},
 {5, 6, 7, 8},
 {9, 10, 11, 12}
 };
 std::vector<std::vector<int>> myVec = {
 {1, 2, 3}, {4, 5, 6}, {7, 8, 9}
 };

 int rows = 3, cols = 4;
 int myArr[rows][cols];
 for(int i = 0; i < rows; i++) {
 for(int j = 0; j < cols; j++) {
 std::cin >> myArr[i][j];
 }
 }

 std::vector<std::vector<int>> myVec = {
 {1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}
 };
 for(int i = 0; i < _____; i++) {
 for(int j = 0; j < _____; j++) {
 std::cout << myArr[i][j];
 }
 std::cout << std::endl;
 }

 std::vector<std::vector<int>> myVec = {
 {1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}
 };
 for(int i = 0; i < myVec.size(); i++) {
 for(int j = 0; j < myVec[0].size(); j++) {
 std::cout << myVec[i][j];
 std::cout << myVec.at(i).at(j);
 }
 std::cout << std::endl;
 }

2-D ARRAY & VECTOR AS FUNCTION PARAMETERS
 void func(char myArr[][5], int rows, int cols) {
 // some code..
 }
• The second square brackets of array declaration parameter cannot be
empty

 void func(std::vector<std::vector<double>>& myVec) {
 // some code..
 }

Exercise (15 minutes)
1. Create a void print function that takes in a char 2D

array and prints out the grid.
2. In main, declare myGrid (a char 2D array of size

7x7).
 * Fill the grid with dots

 But first, we are
 * Make a Y-shaped path going to make a
with asterisks shape together!

