
DISCUSSION SECTION
WEEK 2

EXPRESSIONS, CONDITIONALS, LOOPS, &
C++ PROGRAM STRUCTURE

C vs. C++
✓ C++, also known as “C with Classes,” is an
extension of C with object-oriented programming
support
✓ You can write C code in your C++ program; C++
cannot be written in C programs
✓ C has approx. 32 keywords, C++ has 95 keywords

• You don’t need to memorize them; you will
get familiar with them as you write more C++
code

✓ You will be working in C++ in future classes;
probably C as well

Refresher…
✓ C++ is a strictly typed language

• You must explicitly declare the type of a
variable (or function) when creating it

✓ All C++ programs must have a main function.
ALWAYS!

• By C++ Standards, the main function cannot be
called within a program.

✓ All statements in C++ must end with a semicolon
✓ C++ is not whitespace sensitive, but is case sensitive

Using Boolean Expressions for Conditionals
Knowing that expressions can come in a variety of
different forms, let’s think about how we can utilize
them for conditional statements. So, let’s take a look
at Boolean expressions.

First, what is a Boolean expression? A Boolean
expression is a specific kind of expression whose
value when evaluated results in true or false
(sometimes 1 or 0, respectively).

For example, the code snippet below assigns a
Boolean variable in C++ to true or false depending on
whether or not the value of x is greater than or equal to
25.

bool myBooleanExpression = (x >= 25);

Another example: the code snippet below assigns a
Boolean variable in C++ to true or false depending on
whether or not the value of x is equal to the square root
of y.

bool myBooleanExpression = (x == sqrt(y));

Note: == is an equality operator that is used to
compare right side with left side. Returns true/false.
= (single equal sign) is an assignment operator used to
assign values to variables.
Understand when to use either!

What would be the value of our Boolean
variables?

int x = 25;
int y = 42;

1. bool variable1 = (x > 0);
2. bool variable2 = (y % 2 == 0);

**Remember that % gets the remainder after an
integer division

3. bool variable3 = (x == y);
4. bool variable4 = (x % 10 != 0);

Compound Boolean Expressions
We can certainly combine two or more individual Boolean
expressions into a single compound expression, using
logical operators!

But first, we must understand
the Truth table.

Examples:

bool myExpression = (x >= minVal && x <= maxVal && y >= minVal && y <= maxVal);
bool myExpression = (x > 0 && y < 10) || (z == 5 && w != 0);

Exercise 1 (5 minutes):
Consider a scenario where a company offers discounts based
on the following criteria:
1. If the purchase amount is greater than $100 and the

customer is at least 50 years old, they get a discount.
2. If the purchase amount is between $50 and $100

(inclusive) and the customer is less than 50 years old, they
get a discount.

Write a Boolean expression that evaluates to true if a customer
is eligible for discount based on the given criteria; and
evaluates to false otherwise.
***you may use two variables of your choosing for age
and purchase amount.

Answer

bool discountEligible = (amt > 100 && age >= 50) || (amt >= 50 && amt <= 100 && age < 50);

Exercise 2 (10 minutes):

1. Convert the switch statement on the previous slide
to conditional statements (using if, else if, & else).

2. Write a program that takes in an integer between 1
and 12 (inclusive), and prints out the month
corresponding to that number. Use a switch
statement.

• Print "Invalid month" if the integer input is not
between 1 and 12. (Hint: this is the default case!)

Loops..

for(init; boolean expression; update) {
// some code to be executed

}
• init is usually the declaration of a variable to control

the loop
• boolean exp. is the condition for executing the

code block
• update modifies the variable in init

Range-based For Loop (or For-each loop)
for(type variableName : rangeExpression) {

// some code
}

Example:
for(char letter : "Programming") {

std::cout << letter;
}

• Note: You may get a warning message using the range-based loop if
your version of C++ is prior to C++11. In that case, you can add a c+
+11 flag to your compilation as in:

g++ -std=c++11 main.cpp -o main
….or better still, don’t use range-based loop at all

Nested Loop
✓ is a loop within a loop

Example Scenario:
Suppose you’re a teacher in a classroom with 3 rows of desks, and each
row has 7 students. You want to say “Hello” to every student in each row.

for(int numberOfRows = 1; numberOfRows <= 3; numberOfRows++) {
for(int numStudentsPerRow = 1; numStudentsPerRow <= 7; numStudentsPerRow++)

{ std::cout << "Hello" << std::endl;
}

}

• In this case, we are able to visit all students in a row (inner loop), before
moving on to another row (outer loop).

Exercise 3 (15 minutes)

Write a program to print a 2x3 grid of numbers
starting from 1.

Expected Output:
1 2 3
4 5 6

Answer

#include <iostream>

int main() {
int number = 1;
for (int rows = 1; rows <= 2; rows++) { // 2 rows so outer loop runs twice

for (int cols = 1; cols <= 3; cols++) { // 3 numbers per row
std::cout << number << " ";
number++;

}
std::cout << std::endl; // Move to the next line after each row has printed

}
return 0;

}

Output:
1 2 3
4 5 6

