DISCUSSION SECTION
b WEEK 1

COMMAND LINE INTERFACE
(CLI)

Command Line Interface...
- is a text-based interface where you can input
commands that interact with a computer’s
operating system (OS).
- is different on various operating systems
* MacOS: Mac Terminal
* Windows: Windows PowerShell or
Command Prompt
* LinuxaLinux Bash Shell

A few CLI applications...
1. Configuration of your IP address
2. Send and receive emails
3. Package Management
* to install, update and remove software
packages
4. Text Processing
* {0 se within files (like Command + F

The Standard
- Majarity of developers & companies use
Linux or MacOS. So, get used to Bash!

- Linux/MacOS is more comfortable; programming
tools are easier to use with both e.g., Node.js with
NVM
- Commands are much simpler to write in a
Linux/MacOS terminal as supposed to, for

example, a Windows PowerShell

Some Background about Linux File Systems

- The.Linux file system can be viewed as a tree like
structure. ~ <

- The system is made of directories (folders),
subdirectories and files.

- ~ is the home directory. For the purpose of this
class all we ill be done in the path ~/

File System Overview

N—

o

Current working directory

Denoted by “”

o

ﬁ

33—

=%

-
o~

File System Overview

—

N

“Parent directory”

Denoted by “..”

A few Shell Commands...
pwd*

e cd*

® man

° *

o mkdi

—

%

x N\

El
g

,,
3 5
9_.*
=

.

3

<
*

=+
o
Ic
0
=
*

.
2 18

D
(a]
=
(o]
*

e or *Frequently used in CSC 211

5B

pwd
Prints the current working directory

Ns

cd

Change Directory — change the current working
directory to a specific Folder

mkdir\—
Create.new folder(s), if they do not already exist

touch
Create new file(s)

rm
Remoxg files (delete/unlink)

rmdir T

Remove/delete folder; this command will only work if the
folder is empty

rm —r folderName to delete non-empty folders. Warning:

this is irreversible!

mv

Move OF rename files or directories
ok O

echo

Display message on screen, writes each given
output, with a space between

String to standard
each, and a newline after the last one

clear
Clear the entire terminal window

open
Used to launch files, folders (multiple too), URLs,
applications, and others..

N N

cat
Concatenate and print (display) the content of files

nano

Opens a file in the nano text editor. If the file does not
exist, nano will create it for you.

Exercise 1 (10 minutes)
Provide a sequence of commands to:
i. Navigate to your Desktop directory
ii. Create g:folder named Exercise-1 and navigate to that folder

N
iii. Create a file named bashintro.txt and add the text “I am learning
bash!” to the file (Hint: use nano!)

iv. Make two copies of bashlIntro.txt, named copyl.txt and copy2.txt
v. Delete copy2.txt; Rename copyl.txt to bashCopy.txt

vi. Display the contents of bashCopy.txt

vii. Delete the Exercise-1 folder

3 o

N

Command Line Operators

Shell commands are cool, right? There's a lot you can do with just the list in the section above! But what if | told you it gets even better?

Similar to logical operators in C/C++, or any language for that matter, the command line supports command line operators for more efficient
or even multiple operations. Here are a few of the most frequented command line operators...

Operator Information Example

The pipe operator directs the output of the preceding command as input to the succeeding cat test | grep -i
command. It is most commonly used to filter data with the grep command. "makeuseof"

This operator functions in similar ways to the semicolon operator except, unlike the pwd & mkdir test &
semicolon operator, AND operator will execute commands only if the preceding command cd test && bad_command
was successfully executed. & s

The OR operator will execute the command that follows only if the preceding command fails,
i.e., returns an exit code of 0. It functions like a logical OR gate, which returns a value of 1
when the input is 0.

bad_command || 1s

The redirection operators redirect output or input to a file either by re-writing the file or by

appending to it. If you want to re-write a file, then you have to use the single angle bracket echo "dsd" > test ;
(>) syntax. If you want to append to a file, you'll have to use the double angle bracket syntax ~ echo "bssss" >> test
(>>).

vii.

Exercise 2 (10 minutes)

DO IT ALL AT ONCE WITH COMMAND LINE OPERATORS!
Navigate to your Desktop directory
Create g'f_older named Exercise-1 and navigate to that folder

N
Create a file named bashIntro.txt and add the text “l am learning
bash” to the file (Hint: use redirection operator!)

Make two copies of bashlIntro.txt, named copyl.txt and copy2.txt
Delete copy2.txt; Rename copyl.txt to bashCopy.txt

Display the contents of bashCopy.txt

Delete the Exercise-1 folder

Nowyou should be able to compile and run your
C++ code at'once!

g++ main.cpp -o main && ./main

